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STATISTICAL DISTRIBUTION OF THE BREAKING STRENGTH OF A
BUNDLE OF CLASSICAL FIBERS
by Burt M. Rosenbaum
Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio
ABSTRACT

It is shown that, for ideal bundles having a given number of fibers
that will break under a load pér fiber Zl, and a given number of fibers
that will not break under a load 1, (>ll), the average number of unbroken
fibers in the bundle at loads between Zl and 22 depends linearly on
the probability that an individual fiber picked at random will support
a load 1. Bundles are grouped according to the number of fibers in the
bundle that can support that load per fiber at which the average total
load supported by the bundle is a maximum. An approximation to the maximum
of the average load supported by the bundle is arrived at for each group,
and this maximum averaged over the groups constitutes a lower bound for
the average breaking strength of the bundle. The results agree with those
of Pierce and Daniels.

INTRODUCTION

A classical fiber is one that will support a load less than its breaking
strength indefinitely without stretching or breasking but will bréak immé-
diately under any load equal to or in excess of its breaking strength.
The fundamental papers dealing with the breaking strengths of an ideal
bundle (no friction or twist) of equal-length classical fibers are those

by Pierce (ref. 1) and Daniels (ref. 2). DPierce was the first to obtain

an approximation to the average breaking strength of a bundle of N such
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fibers. Daniels rigorously showed by sophisticated mathematical methods
that the expression of Pierce is the correct asymptotic limit of the breaking
strength as N gets large. He also found the asymptotic limit of the
variance of the breaking strength for large N. 1In this report, the method
of reasoning employed leads to the establishment of the aforementioned
results from a viewpoint that is based on physical rather than mathematical
insight.
Concept of Path
Let the distribution of breaking loads of a classical fiber be given
by the frequency function b(1), where b(1)dl is the probability that
a randomly selected individual fiber will have a breaking strength lying

in di at 1. The cumulative distribution function

1
B(1) = u//1 b(g)as
0

is the probability that a randomly selected fiber will break at some load
less than 1. Let R(1) = 1 - B(1) denote the probability that a fiber
will remain unbroken up to load 1.

When a load L 1s hung on an ideal bundle of n classical fibers,
the load will distribute itself evenly over the n fibers so that each
fiber supports a load 1 = L/n. The breaking strength of a given fiber
of the bundle does not depend on the action of the other fibers of the
bundle and, hence, the breaking strength of the bundle may be determined
from the strengths of the individual fibers. In particular, suppose one

considers the bundle as separated into its independent individual fibers
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with separate loads 1 of equal magnitude on each fiber. Let this load
1 be allowed to increase monotonically from zero to the breasking strength
of the strongest fiber. Then, at any point in the process where the
individual fibers support a load 1, the total load L(1) supported by
the bundle is the product of the number of unbroken fibers n(1) and the
load 1 acting on each unbroken fiber. Thus, the breaking strength of
the bundle is the maximum of the totel load IL. After this maximum L
has been reached, further increases in 1 cause a reduction in the total
load L(1) = in(1). (If the fibers were not separated in this manner and
if breaking strength were determined by increasing L until breakage oc-
curred, no decrease in total load L would appear, and the bundle would
immediately break after the breaking strength of the bundle had been
reached.)

The situation may be depicted by means of figure 1. In figure 1(a),
a typical plot of 1 against R(1) is given. It can be seen that as 1
increases from zero to high values, R(1) decreases from unity to zero
or, if R(l) 1is to be considered the independent varisble, 1 increases
from zero to high values as R(1) decreases from unity to zero. The path
followed by a bundle of N fibers averaged over the population of bundles
is shown as the straight line in figure l(b), where the expected number
of surviving fibers is given by E(n) = NR(1). The path taken by a typical
bundle is shown in figure 1(c), where n for that bundle is plotted against
R(1). For large N at least, the actual path followed by a particular
bundle would be expected to lie fairly close to the average path as given

by the E(n) 1line.
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Results of Pierce and Daniels
The average load supported by the bundle as a function of 1 1is
L(1) = 1E(n) = NIR(1) (1)

The-maximum average load supported by the bundle is

f&na.x = L(1) = NIR(1) (2)
where 1 satisfies the equation
an(
al =0
=1
(3)
or
R(1) = 1b(1) J

Equations (2) and (3) represent the approximation to the breaking strength
of the bundle as given by Pierce. Daniels showed that this result is the
correct asymptotic limit for the expectation value of the breaking strength
for large N. He also found that the asymptotic 1limit for the standard

deviation of the strength for large N is given by

o = 1 AMmR()B() (4)

Daniels makes the pertinent remark that equation (4) would follow if one
could assume that the breaking strength is only dependent on the number
2= n(g) of fibers surviving at a load 3 where ; is, of course,
distributed according to the simple binomial law. He adds, however, that

"a priori justification" for this assumption.

there appears to be no
The average breaking strength S of a bundle of N fibers is the
maximum load that the bundle supports averaged over the population of

bundles. For a particular bundle, this maximum load will not, in general,



S
occur at 1 = 1, and hence, it will be larger than L(7), the value of

L at 1. On the other hand, Eﬁax is the L(?) averaged over the population

of bundles, and therefore, Lmax

constitutes a lower bound for S. If

the maximum load for every possible path (in the sense of figure 1(c))

occurred at 1 = 3, then = f(%) would indeed be § exactly. It

L'max
can be said that the approximation to S as given by equation (2) treats
every path as though its maxitum load occurred at 1 = 3.
Average Path Between Two Designated Points

It shall first be shown that, for values of 1 lying between Zl
and Zz, the average path taken by bundles which are constrained to go
through the points R(Zl), n, and R(Zz), n, (i.e., bundles which have
ny unbroken fibers at a load Zl, and no unbroken fibers at a load 12)
is merely the straight line connecting these two points on-gie plot of
n against R(1). The proof is straightforward and goes as follows.

The probability that a bundle originally consisting of N fibers
takes a path such that it has n, survivors at Zl and n, survivors
at 1, where N > ny 2n, >0 and O < 1y S iy, is

2
P(n, at 1y, n, at 1,) = N
(N - nl)l(nl - nz)lnzl
eI R, - RO 2RI (5)

The probability that a bundle originally consisting of N fibers takes
a path that passes through the three points nl at Zl, n at 1, and

no at 1 where N > ny >n>n

5 , >0 and 0<1; <1<1, is



N.

(N - nl)!(nl -n)¥n - nz)!nzi

P(n; at 1,,n &t 1,n, at 1) =

1

N-n

[B(2.)] L[R(2,) - R(1)ITIR(L) - R(2.)1T 2
1 1 2

R(1)172  (6)

The conditional probability that a bundle which passes through nl at

Zl and n, at 12 has n unbroken fibers at 1 1is given by dividing

equation (6) by equation (5)

(nl

(n; - n)!i(n - ng )t

- H
nz)

P(n at 1/m at 1,0, at 1) =

[R(2)) - RO R(2) - R(2)1T 2 )

n, -n
R - R(1 17z
[R(2)) - R(1,)]
The expectation value of n at 1 for a bundle passing through nl at
1 n, at 22 is
E(n at 1/n; at 1y,n, at 1)

o
E nP(n at Z/nl at 1,0, at 22)

n= n2

1., and

. ) R(1) - R(1p) (5)
"2 LTt R(Zl) - R(Zz)

1

where N > ny >n > n, >0 and O S’Zl <1< Zz.

Equation (8) shows that the average number of fibers surviving in a

bundle passing through n at 1, and n, at 1, is linear in R(1).

Therefore, the average path appears as a straight line connecting the

o

points nq at Zl and n, at 12 on ¥mee plot of n against R(1).
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Classification of Paths
In the calculations in this section, the paths will be grouped in
accordance with %, the number of fibers surviving at 3, and the average
load for each class of paths shall be found as a function of 1 or
R(1). It shall be shown that the average load for paths 1 (fig. 2)
having more fibers surviving at 3 than expected reaches a maximum

~N

value at 1 = 1 whereas the average load for paths 2 having fewer fibers
surviving than expected at 3 reaches a maximm velue at 1 < 1. This
subdivision of paths in accordance with the value of n carries through

at all values of 1 so that the average load L at any 1 for bundles
having a given ﬁ may be determined. The subdivision can also be regarded
as a first, although primitive step in the approach to the ideal wherein

the probability and maximum supported load are determined for each possible
path, so that an averaging of the maximum loads over the infinite population
of paths yields §, the average breaking strength of the bundle.

In accordance with equation (8), the expectation value of n at 1

for a bundle passing through n at 3 is

(v-@w-»H B L >50<3 (ea)
B(1)
E(n at 1/n at 'i)=<
% B n<%1>1 (o)
L R(1) - -

Figure 2 represents the situation that prevails. Every path must go
through the initial point n = N, R(1) = 1 and the terminal point
n = 0, R(1) = 0. If no other point along the path is specified, the

path aversged over the bundles is given by curve 0O of figure 2, that
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is, by a straight line connecting the initial and terminal points. If
a point is specified along the path between the initial and terminal
points, two-segmented lines result that represent the average paths of
bundles going through the additional point specified (curves 1 and 2 of
fig. 2). The additional point specified for curve 1 is ?ﬁ. at 3 whereas
the additional point for curve 2 is %2 at 3.

When the load per fiber is 1, the average total load supported by
a bundle which goes through % at 3 is

T(1/n at 1)

Maximum Loads on Paths

n

1 En at 1A at 1) (10)

The maximum load that occurs on an average path when a particular
2 st 1 is specified can be determined as follows. Let G(1) =1 R(1)s
then equations (1) and (3) can be written
L(1) = N a(1) (la)
¢'(1) = 0 (3a)
The assumption is also made that the form of R(1) 1is such that L(1)
exhibits one and only one peak, that peak occurring at 7. Mathematically
this is equivalent to requiring that
¢'(1) >0 1<1 (11a)
G'(1) <O 1> ‘ (11b)

From equations (9) and (10),

(/\ ’”~ ~
n - NR(1) + (N -n)G' (1)

=500 1< (12a)

aL(1/n_at 1) .
a1

n

my & v (az)
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Equation (12a) shows that, for values of % > NR(%), L(1/% at 3)
is always increasing up to 1 = 3. At 1 = 3, the slope changes sign
(eq. (12b)) and L(1/% at 7) decreases as 1 increases when 1 > 7.
Hence, when % > NR(1) the maximum value of L(1/% at 7) occurs at
1= 3 or

Ta/m et 1) =8 mOA) <f<w (13)
Again, by equations (12), for values of 3 < NR(7), L(1/f at )

reaches a maximum when 1 = %ﬁ < 3, where Aﬁ satisfies the equation

G'(N) = N—T‘%——ﬁ (14)

(=22

With Sﬁ denoting the right side of equation (14) the following quantities
can be expanded in powers of aﬁ, where the coefficients of the powers

of 53 are functions of the derivatives of G(1) evaluated at 3:

~ 1 G3
Nﬁ=z+—5/ﬁ-—sa§+o(a§) (15)
Gy 2G. o
2
G
en) = 6(3) + =82 - L I3 3 4+ ofst (16)
n Go 0 3 3 % B
2 G n
2
=\ /a Ay an 0w 2 . N[G  1)\.3 4
L(7vﬁ/n at 1) =01 - -3, +7|—z- |5+ o(&/\) (17)

In equations (15) to (17) the symbol Gn represents the nt? derivative
of G(1) with respect to 1 evaluated at 1 = 7. DNote that G2 < 0.
BEquations (13) and (17) show that to first order in 6ﬁ’ when the
paths are classified in accordance with T at 3, Daniels' result holde,
that is, the breaking strength of the bundle is only dependent on the

N
number of survivors at 1.
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Equation (17) may be employed to find a larger lower bound for S,

the average breaking strength, than that given by equation (2):

N
s > % P(R at z)E(Aﬁ/ﬁ at 1)
T $=0
[NR(7)]
> WR(1) + = E P(R et 1)|- 8%+ 1% 1 8° + ...[ (18)
2 G, & \355 G/ %
£=0 2

If the varisble is changed from T to y, where y is of standard

measure and is defined by

NR(7) - B (19)

the frequency function f(y) can be expanded in terms of Hermite polynomials

H (y) by the method of Kendall and Stuart (ref. 3):

f(y) 1 e'Y2/2 [} + % “é:y HB(y) + ..i]

N

New
~ L1 yE/a ]y .1 ER(f)"_l (y3 = 3y) + ... (20)
AVzn ) 5 AR(1)B(T) 7 Y

Also ®. can be written as a series in powers of y:
n

k/2

_R(1) (-1)k R(Z vk (21)

NB(7) NB(1)

Substituting in equation (18) yields



- AN ; 1 e-y2/2 . .]_'. ZR(/Z\') — l X 3 - XN
srmmrz | E S manm YT
0
1R 2, (% L R(s)] 2 ¥° ) a
{ G, B(1) ! + st +G2, [B(AZ) /N e

~ rR(3 2 2r(7) -1
>NZR(7,)~"‘:'L‘—'M [l"‘“ () +.|]

4G, B(1) 3 Afeaw(1)B(3)

6s ,1\_1_[ED) 3/2[ ] 2
. - +G2>m [B(“z)] 1+ |+ o1y (22)

The variance of the breaking load based on the previous approximations is

given as

N

s 2
# = (DB ()2 +4 7 é'z' 1

1 ’g 2r(%) -1
l+§ 5 NR('Z)B(’i) +o + 0 (1) (23)

CONCLUDING REMARKS

A method of determining a lower bound for the average breasking
strength of a bundle of classical fibers has been presented which involves
the subdivision of the bundles in accordance with the number of unbroken
fibers\?t a given value of load per fiber. The method also yields the
approxiﬁate statistical distribution of the breaking strengths so that
the variance of strengths may be calculated. It has been found that the

average bundle of every subdivision breaks at sbout the same value of

the load per fiber.
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Load per fiber, 1

Expectation value of number of
unbroken fibers, E(n)

Number of unbroken fibers
in bundle, n

~

R()

(a) Load.

[

R(D)

(b) Expectation of survival,

.:(i!

===

0

Probability that fiber will support load I, R(l)

(c) Number of unbroken fibers.

Figure 1. - Plots with R{l) as independent variable,

Number of unbroken fibers in bundle, n

Probability that fiber will support
load 1, R(1)

Figure 2. - Average paths of bundles.
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